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Overview

Barriers and Targets
Timeline

> Project start date: Oct 2018
» Project end date: Dec 2022
» Percent complete: 40%

» Barrier: Use of lower-density materials with suitable mechanical
properties, i.e., materials with higher strength-to-weight and/or

higher stiffness-to-weight ratios.?)
» Target: Hybrid hierarchical CF reinforced materials that are
ultralight, strong and tough for 3D printing.

Budget Partners
» DOE project funding: $500K » Oak Ridge National Laboratory (ORNL)
« DOE: 50% Prime contract
» Contractor: 50% ORNL project lead: Vlastimil Kunc
» Funding for FY20: $460K > Virginia Polytechnic and State University (VT)
Subcontract

VT project lead: Xiaoyu (Rayne) Zheng
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Relevance

Overall Objectives

Create hybrid hierarchical materials that are
ultralight, strong and tough for 3D printing.

Current Limitations

» Lightweight materials: Unsatisfactory strength,
toughness and weight density

» Direct deposition: Uncontrollable voids and micro-
porosity = Reduced strength and toughness.

» Mutually exclusive properties:
strength «— toughness

stiffness «— damping
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VTO’s Mission

Reduce the transportation energy cost while meeting or
exceeding vehicle performance expectations.

Our Strategies
» Material Combinations

* Brittle carbon fiber and multi-material polymers
» Smart Structure

« Optimal structure for high stiffness and high
damping
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Milestones

Milestone Description Status
/ End Dated P
_ Mechanical properties (compression, shear, tensile) verified through theoretical and

Milestone 1 numerical calculations and experimental testing of microlattice materials Completed
12/30/2018
Milestone 2 Printing hierarchical two-phase carbon fiber reinforced mesoscale lattice materials,
9/30/2019 comprised of microscale carbon fiber fillers and large scale structural components. Completed
Milestone 3 Size effects of carbon fiber composited printed with varying lengthscales from c eted
12/30/2019 micrometers to centimeters ompiete
Milestone 4 Demonstrated ultralight (<200 kg/ m3) hierarchical carbon fiber composites with tailored Completed
04/30/2020 energy absorption and high strain recovery (>10%) ompiete
Milestone 5 Large Area Optical System Setup and Process Characterizations, Multi-material

Extrusion System Setup and Material Printing, Demonstrate high resolution CFRP lattice | On track
12/31/2020 . .

materials with size spans from 10 cm-25 cm
Milestone 6 Development of moving optics and process optimizations, Integration of moving optics

system with multi-nozzle extrusion, Printed multi-material CFRP samples with high On track
12/31/2021 : :

damping and stiffness
Milestone 7 Printing and testing of self-sensing structures, Heating assisted UV curing of high
12/31/2022 viscosity resin, Achieve optimized layer uniformity and max loading of CFRP fibers On track
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Approach

System: Multi-material projection micro-SLA Structure: Lightweight cellular microlattice
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o Using our multi-material PuSL 3D printing system, we aim to design a CF architecture with
% O0AK RIDGE N8 high stiffness and high damping simultaneously.
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Part 1 — AM of light,

Carbon Fiber Reinforced Polymer (CFRP) Printing high stiffness CFRP

+ Carbon fiber

UV curable "
Initiator
monomer
Multi-material
CF resin structure

paste

- Washing _
Extruder vat Resin vats
and doctor
blade
‘;
Translation g

Modulator stage UV-LED

el Oxygen

- /L permeable

window

Multi-material projection microstereolithography (PuSL) system
We developed PuSL 3D printing system that can fabricate samples with carbon fiber reinforced polymer (CFRP) with

a resolution of ~50 microns.



Part 1 — AM of light,

CFRP Stiffness with CF Loading and Relative Density high stiffness CFRP

Comparison of elastic tensile modulus of CFRP
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The target CF loading in our CFRP material is higher than other commonly used samples.



Lattice Structure
C

Part 1 — AM of light,
high stiffness CFRP

We choose octet-truss
geometry because:

Lightweight

Favorable E-p
relationship

Stretch-dominated
(E~p')

Greater stiffness per unit
weight than bending-
dominated

Complex 3D structures fabricated by our PuSL printer using CFRP. (a) Spiral ball. (b) Closed
foam. (c) Cube with holes. (d) Multi-material octet-truss made of CFRP and polyethylene glycol
diacrylate (PEGDA) resin. (e-h) arbitrary gyroid 3D structure with a minimum feature of ~150um

Achieved CF composites with complex 3D micro-architectures with multi-materials.



Part 2 — Multi-phase of light, high stiffness

Intrinsic/Structural Damping for Lattice Structure andigh damping crre structures

_ Intrinsic damping Structural damping

Intrinsic damping
tand (at 10 Hz) = 0.038 via DMA test

Range Infinitesimal or small Large
Structural damping
14 Viscoelastic nature of  Deformation mechanisms
Cause - :
_ material itself of constituent cells
1.2 |—CF octet unit cyclic loading
— 1 Testing Dynamic Material QUEB BT Sele i
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Energy dissipation through intrinsic damping and structural damping




Part 2 — Multi-phase of light, high stiffness

Intrinsic Damping of Bulk CFRP with Soft phase  andnion damping crre stuctures

104 — - —— - - — Design of lightweight, stiff, high damping microlattice with two-
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We adopted a two-phase design comprising solid CF reinforced composite and soft material to reach the upper bound

of stiffness-damping pair



Part 2 — Multi-phase of light, high stiffness

Intrinsic Damping (Experiment) and high damping CFRP structures
Effective modulus Loss tangent Figure of merit
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* Results shown for our CFRP microlattice of p =7 %
— Intrinsic damping properties are independent of relative density by theory

« As anincrease in V., E decreases and tand increases

« Atnear V_y ~ 10 %, damping FOM (3" figure) becomes the maximum, which is ~3 times larger than
that of pure CFRP lattices

Theoretical prediction shows that the optimal (= maximum) figure of merit can be achieved at V_; = 10% from intrinsic

damping.



Structural Damping (Experiment)

Evolution of stress-strain hysteresis with various p under cyclic loading
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Part 2 — Multi-phase of light, high stiffness

and high damping CFRP structures
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« Improved damping performance in low relative densities
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I Part 2 — Multi-phase of light, high stiffness
Tunability Maps & Performance Chart and high damping CFRP structures
_ _ _ E13/p vs. tand chart for our lightweight cellular
Tunability maps of the damping figure of merit CFRP microlattice and other family of materials
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and inter/extrapolation Loss tangent tand [-]

The maps offer to choose a specific set of design parameters ~ * Our CFRP microlattices have specific stiffness

for the desired stiffness-damping pair. comparable to commercially available CFRP
while being dissipative as elastomers.

Design of our CFRP microlattice offers tunability for the desired stiffness-damping pair.




Part 3 — Large area 3D printing of carbon fiber

Larg e Area CF Prl ntl n g SyStem composite, and improvement of fiber alignment.
y | ,/ 1
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Printing dimension: ~ 12 x 8 x 7 (cm?3)

We improved our PuSL system with adjustable printing area to fabricate large-scale CFRP lattice structures.




Proposed Method for Carbon Fiber Alignment  commeic d mprovement o fier aignment.

CFRP resin

(Fiber can be aligned
along any directions
in the plane)

Oxygen
permeable
Window

Stereolithography integrated with extrusion process

We propose a method for carbon fiber alignment via stereolithography integrated with extrusion process, offering

superior resolution (~0.1 mm).



Part 3 — Large area 3D printing of carbon fiber

SIZG effeCtS Of CFRP OCtet'trUSS composite, and improvement of fiber alignment.
CFRP octet-truss lattices Elastic modulus
'8'50
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We observed softening size effects on material properties of CFRP octet-truss lattice structures.




Collaboration

 Subcontractor: University of California, Los Angeles
— Xiaoyu Rayne Zheng, Zhenpeng Xu, Chan Soo Ha
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Remaining Challenges

» Develop higher modulus carbon fiber reinforced polymer composites
* Choose a monomer with lower viscosity to increase fiber loading of CFRP.
* Managing viscosity and processability: viscosity of the resin increases as carbon fiber
loading increases.

» Tradeoff between resolution and building area
« Scaling up printing method in progress.

» Scale up of technology for vehicle demonstration

» Achievement of superior recoverability (>20%) with the brittle nature of carbon fiber
composite

NN =
#,0AK RIDGE N4
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Proposed Future Research

Ongoing:
» Design hierarchical carbon fiber lattice materials (< 500kg/m3) with tunable directional or
Isotropic functionally graded designed stiffness and energy absorbing capabilities.

Planned:
» Large Area CFRP Smart Composite Additive Manufacturing (Resolution <50um, >25 cm x
25cm)
» Additive manufacturing of CFRP composite with aligned carbon fiber arrays
» Additive Manufacturing of Smart Composites (Self-sensing)
» Additive manufacture lightweight carbon fiber lattice materials (< 100kg/m3 with <100
microns feature size) with superior recoverability (>20% in strain).

N — Any proposed future work is subject to change based on funding levels.
OAK RIDGE 7/~ y prop J g g
19 National Laboratory WIRGINIA TECH.
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Summary

 Target: Hybrid hierarchical CF reinforced materials that are ultralight, strong and tough for 3D printing.

» Developed: Multi-material lattice structures with high stiffness, high damping / energy absorption and high

strain recovery (>10%

)

 Future: Fabricate hierarchical carbon fiber lattice materials (<500kg/m3) with tunable directional or
Isotropic functionally graded designed stiffness and energy absorbing capabilities with superior

recoverability (>20% in strain)
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Figure of merit E'3/p [Pa'3/kgm®]
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Part 2 — Multi-phase of light, high stiffness

DeS | g n Goal and high damping CFRP structures
= Maximize the figure of merit, E3tand /p
T | )ur target area

Technical ceramics —_ .
£
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g .|  HighE lowtans rum———— %
\,E, .
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Mechanicél loss coefficient tan6 [-]
E3/p vs. tand chart for CFRP and other family of materials

Using our multi-material PuSL 3D printing system, we aim to design a CF architecture with high stiffness and high

damping simultaneously.



Lightweight, High-Stiffness Microlattice

Adopted from Ref [3]
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® Solid HDDA, bend-dominated foam

We choose octet-truss geometry because:

Lightweight
Favorable E-p relationship
Stretch-dominated (E~p?)

Greater stiffness per unit weight than
bending-dominated

We selected octet-truss unit cell as a base architecture due to its lightweightness and its greater stiffness per unit

weight than bending-dominated cells.



